This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div2sub | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC /\ C =/= D ) ) -> ( ( A - B ) / ( C - D ) ) = ( ( B - A ) / ( D - C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 2 | subcl | |- ( ( C e. CC /\ D e. CC ) -> ( C - D ) e. CC ) |
|
| 3 | 2 | 3adant3 | |- ( ( C e. CC /\ D e. CC /\ C =/= D ) -> ( C - D ) e. CC ) |
| 4 | subeq0 | |- ( ( C e. CC /\ D e. CC ) -> ( ( C - D ) = 0 <-> C = D ) ) |
|
| 5 | 4 | necon3bid | |- ( ( C e. CC /\ D e. CC ) -> ( ( C - D ) =/= 0 <-> C =/= D ) ) |
| 6 | 5 | biimp3ar | |- ( ( C e. CC /\ D e. CC /\ C =/= D ) -> ( C - D ) =/= 0 ) |
| 7 | 3 6 | jca | |- ( ( C e. CC /\ D e. CC /\ C =/= D ) -> ( ( C - D ) e. CC /\ ( C - D ) =/= 0 ) ) |
| 8 | div2neg | |- ( ( ( A - B ) e. CC /\ ( C - D ) e. CC /\ ( C - D ) =/= 0 ) -> ( -u ( A - B ) / -u ( C - D ) ) = ( ( A - B ) / ( C - D ) ) ) |
|
| 9 | 8 | 3expb | |- ( ( ( A - B ) e. CC /\ ( ( C - D ) e. CC /\ ( C - D ) =/= 0 ) ) -> ( -u ( A - B ) / -u ( C - D ) ) = ( ( A - B ) / ( C - D ) ) ) |
| 10 | 1 7 9 | syl2an | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC /\ C =/= D ) ) -> ( -u ( A - B ) / -u ( C - D ) ) = ( ( A - B ) / ( C - D ) ) ) |
| 11 | negsubdi2 | |- ( ( A e. CC /\ B e. CC ) -> -u ( A - B ) = ( B - A ) ) |
|
| 12 | negsubdi2 | |- ( ( C e. CC /\ D e. CC ) -> -u ( C - D ) = ( D - C ) ) |
|
| 13 | 12 | 3adant3 | |- ( ( C e. CC /\ D e. CC /\ C =/= D ) -> -u ( C - D ) = ( D - C ) ) |
| 14 | 11 13 | oveqan12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC /\ C =/= D ) ) -> ( -u ( A - B ) / -u ( C - D ) ) = ( ( B - A ) / ( D - C ) ) ) |
| 15 | 10 14 | eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC /\ C =/= D ) ) -> ( ( A - B ) / ( C - D ) ) = ( ( B - A ) / ( D - C ) ) ) |