This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function F on an open interval, has the same directed integral as its extension G on the closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ditgeqiooicc.1 | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| ditgeqiooicc.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ditgeqiooicc.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ditgeqiooicc.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ditgeqiooicc.5 | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | ||
| Assertion | ditgeqiooicc | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( 𝐹 ‘ 𝑥 ) d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgeqiooicc.1 | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 2 | ditgeqiooicc.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | ditgeqiooicc.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | ditgeqiooicc.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 5 | ditgeqiooicc.5 | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | |
| 6 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 7 | 6 | sseli | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 9 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 11 | 9 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 13 | 12 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 14 | elioo2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) | |
| 15 | 11 13 14 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 16 | 10 15 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 17 | 16 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑥 ) |
| 18 | 9 17 | gtned | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ≠ 𝐴 ) |
| 19 | 18 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 = 𝐴 ) |
| 20 | 19 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 21 | 16 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 22 | 16 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 < 𝐵 ) |
| 23 | 21 22 | ltned | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ≠ 𝐵 ) |
| 24 | 23 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 = 𝐵 ) |
| 25 | 24 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 26 | 20 25 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 27 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 28 | 26 27 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 29 | 1 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 30 | 8 28 29 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 31 | 30 20 25 | 3eqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 32 | 31 | itgeq2dv | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 33 | 4 | ditgpos | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 34 | 4 | ditgpos | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( 𝐺 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| 35 | 32 33 34 | 3eqtr4d | ⊢ ( 𝜑 → ⨜ [ 𝐴 → 𝐵 ] ( 𝐹 ‘ 𝑥 ) d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |