This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function F on an open interval, has the same directed integral as its extension G on the closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ditgeqiooicc.1 | |- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
|
| ditgeqiooicc.2 | |- ( ph -> A e. RR ) |
||
| ditgeqiooicc.3 | |- ( ph -> B e. RR ) |
||
| ditgeqiooicc.4 | |- ( ph -> A <_ B ) |
||
| ditgeqiooicc.5 | |- ( ph -> F : ( A (,) B ) --> RR ) |
||
| Assertion | ditgeqiooicc | |- ( ph -> S_ [ A -> B ] ( F ` x ) _d x = S_ [ A -> B ] ( G ` x ) _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgeqiooicc.1 | |- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
|
| 2 | ditgeqiooicc.2 | |- ( ph -> A e. RR ) |
|
| 3 | ditgeqiooicc.3 | |- ( ph -> B e. RR ) |
|
| 4 | ditgeqiooicc.4 | |- ( ph -> A <_ B ) |
|
| 5 | ditgeqiooicc.5 | |- ( ph -> F : ( A (,) B ) --> RR ) |
|
| 6 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 7 | 6 | sseli | |- ( x e. ( A (,) B ) -> x e. ( A [,] B ) ) |
| 8 | 7 | adantl | |- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A [,] B ) ) |
| 9 | 2 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR ) |
| 10 | simpr | |- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A (,) B ) ) |
|
| 11 | 9 | rexrd | |- ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR* ) |
| 12 | 3 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> B e. RR ) |
| 13 | 12 | rexrd | |- ( ( ph /\ x e. ( A (,) B ) ) -> B e. RR* ) |
| 14 | elioo2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A (,) B ) <-> ( x e. RR /\ A < x /\ x < B ) ) ) |
|
| 15 | 11 13 14 | syl2anc | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( x e. ( A (,) B ) <-> ( x e. RR /\ A < x /\ x < B ) ) ) |
| 16 | 10 15 | mpbid | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( x e. RR /\ A < x /\ x < B ) ) |
| 17 | 16 | simp2d | |- ( ( ph /\ x e. ( A (,) B ) ) -> A < x ) |
| 18 | 9 17 | gtned | |- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= A ) |
| 19 | 18 | neneqd | |- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = A ) |
| 20 | 19 | iffalsed | |- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
| 21 | 16 | simp1d | |- ( ( ph /\ x e. ( A (,) B ) ) -> x e. RR ) |
| 22 | 16 | simp3d | |- ( ( ph /\ x e. ( A (,) B ) ) -> x < B ) |
| 23 | 21 22 | ltned | |- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= B ) |
| 24 | 23 | neneqd | |- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = B ) |
| 25 | 24 | iffalsed | |- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
| 26 | 20 25 | eqtrd | |- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
| 27 | 5 | ffvelcdmda | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. RR ) |
| 28 | 26 27 | eqeltrd | |- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
| 29 | 1 | fvmpt2 | |- ( ( x e. ( A [,] B ) /\ if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 30 | 8 28 29 | syl2anc | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 31 | 30 20 25 | 3eqtrrd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) = ( G ` x ) ) |
| 32 | 31 | itgeq2dv | |- ( ph -> S. ( A (,) B ) ( F ` x ) _d x = S. ( A (,) B ) ( G ` x ) _d x ) |
| 33 | 4 | ditgpos | |- ( ph -> S_ [ A -> B ] ( F ` x ) _d x = S. ( A (,) B ) ( F ` x ) _d x ) |
| 34 | 4 | ditgpos | |- ( ph -> S_ [ A -> B ] ( G ` x ) _d x = S. ( A (,) B ) ( G ` x ) _d x ) |
| 35 | 32 33 34 | 3eqtr4d | |- ( ph -> S_ [ A -> B ] ( F ` x ) _d x = S_ [ A -> B ] ( G ` x ) _d x ) |