This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the directed integral. (The domain of the equality here is very rough; for more precise bounds one should decompose it with ditgpos first and use the equality theorems for df-itg .) (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ditgeq3 | ⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] 𝐸 d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 2 | ssralv | ⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ → ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐷 = 𝐸 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐷 = 𝐸 ) |
| 4 | itgeq2 | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐷 = 𝐸 → ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) 𝐸 d 𝑥 ) | |
| 5 | 3 4 | syl | ⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) 𝐸 d 𝑥 ) |
| 6 | ioossre | ⊢ ( 𝐵 (,) 𝐴 ) ⊆ ℝ | |
| 7 | ssralv | ⊢ ( ( 𝐵 (,) 𝐴 ) ⊆ ℝ → ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀ 𝑥 ∈ ( 𝐵 (,) 𝐴 ) 𝐷 = 𝐸 ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ∀ 𝑥 ∈ ( 𝐵 (,) 𝐴 ) 𝐷 = 𝐸 ) |
| 9 | itgeq2 | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 (,) 𝐴 ) 𝐷 = 𝐸 → ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑥 = ∫ ( 𝐵 (,) 𝐴 ) 𝐸 d 𝑥 ) | |
| 10 | 8 9 | syl | ⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑥 = ∫ ( 𝐵 (,) 𝐴 ) 𝐸 d 𝑥 ) |
| 11 | 10 | negeqd | ⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑥 = - ∫ ( 𝐵 (,) 𝐴 ) 𝐸 d 𝑥 ) |
| 12 | 5 11 | ifeq12d | ⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑥 ) = if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐸 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐸 d 𝑥 ) ) |
| 13 | df-ditg | ⊢ ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑥 ) | |
| 14 | df-ditg | ⊢ ⨜ [ 𝐴 → 𝐵 ] 𝐸 d 𝑥 = if ( 𝐴 ≤ 𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐸 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐸 d 𝑥 ) | |
| 15 | 12 13 14 | 3eqtr4g | ⊢ ( ∀ 𝑥 ∈ ℝ 𝐷 = 𝐸 → ⨜ [ 𝐴 → 𝐵 ] 𝐷 d 𝑥 = ⨜ [ 𝐴 → 𝐵 ] 𝐸 d 𝑥 ) |