This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the directed integral. (The domain of the equality here is very rough; for more precise bounds one should decompose it with ditgpos first and use the equality theorems for df-itg .) (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ditgeq3 | |- ( A. x e. RR D = E -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossre | |- ( A (,) B ) C_ RR |
|
| 2 | ssralv | |- ( ( A (,) B ) C_ RR -> ( A. x e. RR D = E -> A. x e. ( A (,) B ) D = E ) ) |
|
| 3 | 1 2 | ax-mp | |- ( A. x e. RR D = E -> A. x e. ( A (,) B ) D = E ) |
| 4 | itgeq2 | |- ( A. x e. ( A (,) B ) D = E -> S. ( A (,) B ) D _d x = S. ( A (,) B ) E _d x ) |
|
| 5 | 3 4 | syl | |- ( A. x e. RR D = E -> S. ( A (,) B ) D _d x = S. ( A (,) B ) E _d x ) |
| 6 | ioossre | |- ( B (,) A ) C_ RR |
|
| 7 | ssralv | |- ( ( B (,) A ) C_ RR -> ( A. x e. RR D = E -> A. x e. ( B (,) A ) D = E ) ) |
|
| 8 | 6 7 | ax-mp | |- ( A. x e. RR D = E -> A. x e. ( B (,) A ) D = E ) |
| 9 | itgeq2 | |- ( A. x e. ( B (,) A ) D = E -> S. ( B (,) A ) D _d x = S. ( B (,) A ) E _d x ) |
|
| 10 | 8 9 | syl | |- ( A. x e. RR D = E -> S. ( B (,) A ) D _d x = S. ( B (,) A ) E _d x ) |
| 11 | 10 | negeqd | |- ( A. x e. RR D = E -> -u S. ( B (,) A ) D _d x = -u S. ( B (,) A ) E _d x ) |
| 12 | 5 11 | ifeq12d | |- ( A. x e. RR D = E -> if ( A <_ B , S. ( A (,) B ) D _d x , -u S. ( B (,) A ) D _d x ) = if ( A <_ B , S. ( A (,) B ) E _d x , -u S. ( B (,) A ) E _d x ) ) |
| 13 | df-ditg | |- S_ [ A -> B ] D _d x = if ( A <_ B , S. ( A (,) B ) D _d x , -u S. ( B (,) A ) D _d x ) |
|
| 14 | df-ditg | |- S_ [ A -> B ] E _d x = if ( A <_ B , S. ( A (,) B ) E _d x , -u S. ( B (,) A ) E _d x ) |
|
| 15 | 12 13 14 | 3eqtr4g | |- ( A. x e. RR D = E -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x ) |