This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjsuc2 | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjressuc2 | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ) ) | |
| 2 | disjecxrncnvep | ⊢ ( ( 𝑢 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ↔ ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) | |
| 3 | 2 | el2v1 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ↔ ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
| 4 | 3 | ralbidv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ 𝐴 ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ↔ ∀ 𝑢 ∈ 𝐴 ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) |
| 5 | 4 | anbi2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) ) |
| 6 | 1 5 | bitrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑢 ∈ ( 𝐴 ∪ { 𝐴 } ) ∀ 𝑣 ∈ ( 𝐴 ∪ { 𝐴 } ) ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝑣 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ) ∧ ∀ 𝑢 ∈ 𝐴 ( ( 𝑢 ∩ 𝐴 ) = ∅ ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝐴 ] 𝑅 ) = ∅ ) ) ) ) |