This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013) (Revised by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difxp2 | ⊢ ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 × 𝐵 ) ∖ ( 𝐴 × 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difxp | ⊢ ( ( 𝐴 × 𝐵 ) ∖ ( 𝐴 × 𝐶 ) ) = ( ( ( 𝐴 ∖ 𝐴 ) × 𝐵 ) ∪ ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ) | |
| 2 | difid | ⊢ ( 𝐴 ∖ 𝐴 ) = ∅ | |
| 3 | 2 | xpeq1i | ⊢ ( ( 𝐴 ∖ 𝐴 ) × 𝐵 ) = ( ∅ × 𝐵 ) |
| 4 | 0xp | ⊢ ( ∅ × 𝐵 ) = ∅ | |
| 5 | 3 4 | eqtri | ⊢ ( ( 𝐴 ∖ 𝐴 ) × 𝐵 ) = ∅ |
| 6 | 5 | uneq1i | ⊢ ( ( ( 𝐴 ∖ 𝐴 ) × 𝐵 ) ∪ ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ) = ( ∅ ∪ ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ) |
| 7 | uncom | ⊢ ( ∅ ∪ ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ) = ( ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ∪ ∅ ) | |
| 8 | un0 | ⊢ ( ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ∪ ∅ ) = ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) | |
| 9 | 7 8 | eqtri | ⊢ ( ∅ ∪ ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ) = ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) |
| 10 | 1 6 9 | 3eqtrri | ⊢ ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 × 𝐵 ) ∖ ( 𝐴 × 𝐶 ) ) |