This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013) (Revised by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difxp2 | |- ( A X. ( B \ C ) ) = ( ( A X. B ) \ ( A X. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difxp | |- ( ( A X. B ) \ ( A X. C ) ) = ( ( ( A \ A ) X. B ) u. ( A X. ( B \ C ) ) ) |
|
| 2 | difid | |- ( A \ A ) = (/) |
|
| 3 | 2 | xpeq1i | |- ( ( A \ A ) X. B ) = ( (/) X. B ) |
| 4 | 0xp | |- ( (/) X. B ) = (/) |
|
| 5 | 3 4 | eqtri | |- ( ( A \ A ) X. B ) = (/) |
| 6 | 5 | uneq1i | |- ( ( ( A \ A ) X. B ) u. ( A X. ( B \ C ) ) ) = ( (/) u. ( A X. ( B \ C ) ) ) |
| 7 | uncom | |- ( (/) u. ( A X. ( B \ C ) ) ) = ( ( A X. ( B \ C ) ) u. (/) ) |
|
| 8 | un0 | |- ( ( A X. ( B \ C ) ) u. (/) ) = ( A X. ( B \ C ) ) |
|
| 9 | 7 8 | eqtri | |- ( (/) u. ( A X. ( B \ C ) ) ) = ( A X. ( B \ C ) ) |
| 10 | 1 6 9 | 3eqtrri | |- ( A X. ( B \ C ) ) = ( ( A X. B ) \ ( A X. C ) ) |