This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | difopn | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∖ 𝐵 ) ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | elssuni | ⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽 ) | |
| 3 | 2 1 | sseqtrrdi | ⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ 𝑋 ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐴 ⊆ 𝑋 ) |
| 5 | dfss2 | ⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝐴 ∩ 𝑋 ) = 𝐴 ) | |
| 6 | 4 5 | sylib | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∩ 𝑋 ) = 𝐴 ) |
| 7 | 6 | difeq1d | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐴 ∩ 𝑋 ) ∖ 𝐵 ) = ( 𝐴 ∖ 𝐵 ) ) |
| 8 | indif2 | ⊢ ( 𝐴 ∩ ( 𝑋 ∖ 𝐵 ) ) = ( ( 𝐴 ∩ 𝑋 ) ∖ 𝐵 ) | |
| 9 | cldrcl | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ Top ) |
| 11 | simpl | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐴 ∈ 𝐽 ) | |
| 12 | 1 | cldopn | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ 𝐵 ) ∈ 𝐽 ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ 𝐵 ) ∈ 𝐽 ) |
| 14 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ ( 𝑋 ∖ 𝐵 ) ∈ 𝐽 ) → ( 𝐴 ∩ ( 𝑋 ∖ 𝐵 ) ) ∈ 𝐽 ) | |
| 15 | 10 11 13 14 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∩ ( 𝑋 ∖ 𝐵 ) ) ∈ 𝐽 ) |
| 16 | 8 15 | eqeltrrid | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐴 ∩ 𝑋 ) ∖ 𝐵 ) ∈ 𝐽 ) |
| 17 | 7 16 | eqeltrrd | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∖ 𝐵 ) ∈ 𝐽 ) |