This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscld.1 | |- X = U. J |
|
| Assertion | difopn | |- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> ( A \ B ) e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | |- X = U. J |
|
| 2 | elssuni | |- ( A e. J -> A C_ U. J ) |
|
| 3 | 2 1 | sseqtrrdi | |- ( A e. J -> A C_ X ) |
| 4 | 3 | adantr | |- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> A C_ X ) |
| 5 | dfss2 | |- ( A C_ X <-> ( A i^i X ) = A ) |
|
| 6 | 4 5 | sylib | |- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> ( A i^i X ) = A ) |
| 7 | 6 | difeq1d | |- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> ( ( A i^i X ) \ B ) = ( A \ B ) ) |
| 8 | indif2 | |- ( A i^i ( X \ B ) ) = ( ( A i^i X ) \ B ) |
|
| 9 | cldrcl | |- ( B e. ( Clsd ` J ) -> J e. Top ) |
|
| 10 | 9 | adantl | |- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> J e. Top ) |
| 11 | simpl | |- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> A e. J ) |
|
| 12 | 1 | cldopn | |- ( B e. ( Clsd ` J ) -> ( X \ B ) e. J ) |
| 13 | 12 | adantl | |- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> ( X \ B ) e. J ) |
| 14 | inopn | |- ( ( J e. Top /\ A e. J /\ ( X \ B ) e. J ) -> ( A i^i ( X \ B ) ) e. J ) |
|
| 15 | 10 11 13 14 | syl3anc | |- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> ( A i^i ( X \ B ) ) e. J ) |
| 16 | 8 15 | eqeltrrid | |- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> ( ( A i^i X ) \ B ) e. J ) |
| 17 | 7 16 | eqeltrrd | |- ( ( A e. J /\ B e. ( Clsd ` J ) ) -> ( A \ B ) e. J ) |