This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any category C is isomorphic to the category of functors from a terminal category to C . See also the "Properties" section of https://ncatlab.org/nlab/show/terminal+category . Therefore the number of categories isomorphic to a non-empty category is at least the number of singletons, so large ( snnex ) that these isomorphic categories form a proper class. (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diagffth.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| diagffth.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | ||
| diagffth.q | ⊢ 𝑄 = ( 𝐷 FuncCat 𝐶 ) | ||
| diagciso.e | ⊢ 𝐸 = ( CatCat ‘ 𝑈 ) | ||
| diagciso.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| diagciso.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | ||
| diagciso.1 | ⊢ ( 𝜑 → 𝑄 ∈ 𝑈 ) | ||
| Assertion | diagcic | ⊢ ( 𝜑 → 𝐶 ( ≃𝑐 ‘ 𝐸 ) 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diagffth.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | diagffth.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | |
| 3 | diagffth.q | ⊢ 𝑄 = ( 𝐷 FuncCat 𝐶 ) | |
| 4 | diagciso.e | ⊢ 𝐸 = ( CatCat ‘ 𝑈 ) | |
| 5 | diagciso.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 6 | diagciso.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | |
| 7 | diagciso.1 | ⊢ ( 𝜑 → 𝑄 ∈ 𝑈 ) | |
| 8 | eqid | ⊢ ( Iso ‘ 𝐸 ) = ( Iso ‘ 𝐸 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 10 | 4 | catccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐸 ∈ Cat ) |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 12 | 6 1 | elind | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝑈 ∩ Cat ) ) |
| 13 | 4 9 5 | catcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( 𝑈 ∩ Cat ) ) |
| 14 | 12 13 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝐸 ) ) |
| 15 | 2 | termccd | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 16 | 3 15 1 | fuccat | ⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
| 17 | 7 16 | elind | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑈 ∩ Cat ) ) |
| 18 | 17 13 | eleqtrrd | ⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝐸 ) ) |
| 19 | eqid | ⊢ ( 𝐶 Δfunc 𝐷 ) = ( 𝐶 Δfunc 𝐷 ) | |
| 20 | 1 2 3 4 5 6 7 8 19 | diagciso | ⊢ ( 𝜑 → ( 𝐶 Δfunc 𝐷 ) ∈ ( 𝐶 ( Iso ‘ 𝐸 ) 𝑄 ) ) |
| 21 | 8 9 11 14 18 20 | brcici | ⊢ ( 𝜑 → 𝐶 ( ≃𝑐 ‘ 𝐸 ) 𝑄 ) |