This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elopabi.1 | ⊢ ( 𝑥 = ( 1st ‘ 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| elopabi.2 | ⊢ ( 𝑦 = ( 2nd ‘ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | elopabi | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopabi.1 | ⊢ ( 𝑥 = ( 1st ‘ 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | elopabi.2 | ⊢ ( 𝑦 = ( 2nd ‘ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | relopabv | ⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
| 4 | 1st2nd | ⊢ ( ( Rel { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∧ 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) → 𝐴 = 〈 ( 1st ‘ 𝐴 ) , ( 2nd ‘ 𝐴 ) 〉 ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } → 𝐴 = 〈 ( 1st ‘ 𝐴 ) , ( 2nd ‘ 𝐴 ) 〉 ) |
| 6 | id | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } → 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) | |
| 7 | 5 6 | eqeltrrd | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } → 〈 ( 1st ‘ 𝐴 ) , ( 2nd ‘ 𝐴 ) 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) |
| 8 | fvex | ⊢ ( 1st ‘ 𝐴 ) ∈ V | |
| 9 | fvex | ⊢ ( 2nd ‘ 𝐴 ) ∈ V | |
| 10 | 8 9 1 2 | opelopab | ⊢ ( 〈 ( 1st ‘ 𝐴 ) , ( 2nd ‘ 𝐴 ) 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜒 ) |
| 11 | 7 10 | sylib | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } → 𝜒 ) |