This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
dfssf
Metamath Proof Explorer
Description: Equivalence for subclass relation, using bound-variable hypotheses
instead of distinct variable conditions. (Contributed by NM , 3-Jul-1994) (Revised by Andrew Salmon , 27-Aug-2011) Avoid ax-13 .
(Revised by GG , 19-May-2023)
Ref
Expression
Hypotheses
dfssf.1
⊢ Ⅎ _ x A
dfssf.2
⊢ Ⅎ _ x B
Assertion
dfssf
⊢ A ⊆ B ↔ ∀ x x ∈ A → x ∈ B
Proof
Step
Hyp
Ref
Expression
1
dfssf.1
⊢ Ⅎ _ x A
2
dfssf.2
⊢ Ⅎ _ x B
3
df-ss
⊢ A ⊆ B ↔ ∀ z z ∈ A → z ∈ B
4
1
nfcri
⊢ Ⅎ x z ∈ A
5
2
nfcri
⊢ Ⅎ x z ∈ B
6
4 5
nfim
⊢ Ⅎ x z ∈ A → z ∈ B
7
nfv
⊢ Ⅎ z x ∈ A → x ∈ B
8
eleq1w
⊢ z = x → z ∈ A ↔ x ∈ A
9
eleq1w
⊢ z = x → z ∈ B ↔ x ∈ B
10
8 9
imbi12d
⊢ z = x → z ∈ A → z ∈ B ↔ x ∈ A → x ∈ B
11
6 7 10
cbvalv1
⊢ ∀ z z ∈ A → z ∈ B ↔ ∀ x x ∈ A → x ∈ B
12
3 11
bitri
⊢ A ⊆ B ↔ ∀ x x ∈ A → x ∈ B