This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfres2 | ⊢ ( 𝑅 ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | ⊢ Rel ( 𝑅 ↾ 𝐴 ) | |
| 2 | relopabv | ⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) } | |
| 3 | vex | ⊢ 𝑧 ∈ V | |
| 4 | vex | ⊢ 𝑤 ∈ V | |
| 5 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 6 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝑅 𝑦 ↔ 𝑧 𝑅 𝑦 ) ) | |
| 7 | 5 6 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 𝑅 𝑦 ) ) ) |
| 8 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 𝑤 ) ) | |
| 9 | 8 | anbi2d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 𝑅 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 𝑅 𝑤 ) ) ) |
| 10 | 3 4 7 9 | opelopab | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) } ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 𝑅 𝑤 ) ) |
| 11 | 4 | brresi | ⊢ ( 𝑧 ( 𝑅 ↾ 𝐴 ) 𝑤 ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 𝑅 𝑤 ) ) |
| 12 | df-br | ⊢ ( 𝑧 ( 𝑅 ↾ 𝐴 ) 𝑤 ↔ 〈 𝑧 , 𝑤 〉 ∈ ( 𝑅 ↾ 𝐴 ) ) | |
| 13 | 10 11 12 | 3bitr2ri | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ( 𝑅 ↾ 𝐴 ) ↔ 〈 𝑧 , 𝑤 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) } ) |
| 14 | 1 2 13 | eqrelriiv | ⊢ ( 𝑅 ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) } |