This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfres2 | |- ( R |` A ) = { <. x , y >. | ( x e. A /\ x R y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | |- Rel ( R |` A ) |
|
| 2 | relopabv | |- Rel { <. x , y >. | ( x e. A /\ x R y ) } |
|
| 3 | vex | |- z e. _V |
|
| 4 | vex | |- w e. _V |
|
| 5 | eleq1w | |- ( x = z -> ( x e. A <-> z e. A ) ) |
|
| 6 | breq1 | |- ( x = z -> ( x R y <-> z R y ) ) |
|
| 7 | 5 6 | anbi12d | |- ( x = z -> ( ( x e. A /\ x R y ) <-> ( z e. A /\ z R y ) ) ) |
| 8 | breq2 | |- ( y = w -> ( z R y <-> z R w ) ) |
|
| 9 | 8 | anbi2d | |- ( y = w -> ( ( z e. A /\ z R y ) <-> ( z e. A /\ z R w ) ) ) |
| 10 | 3 4 7 9 | opelopab | |- ( <. z , w >. e. { <. x , y >. | ( x e. A /\ x R y ) } <-> ( z e. A /\ z R w ) ) |
| 11 | 4 | brresi | |- ( z ( R |` A ) w <-> ( z e. A /\ z R w ) ) |
| 12 | df-br | |- ( z ( R |` A ) w <-> <. z , w >. e. ( R |` A ) ) |
|
| 13 | 10 11 12 | 3bitr2ri | |- ( <. z , w >. e. ( R |` A ) <-> <. z , w >. e. { <. x , y >. | ( x e. A /\ x R y ) } ) |
| 14 | 1 2 13 | eqrelriiv | |- ( R |` A ) = { <. x , y >. | ( x e. A /\ x R y ) } |