This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Another quantifier-free definition of On . (Contributed by Scott Fenton, 4-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfon4 | |- On = ( _V \ ( ( SSet \ ( _I u. _E ) ) " Trans ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfon3 | |- On = ( _V \ ran ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) ) |
|
| 2 | df-ima | |- ( ( SSet \ ( _I u. _E ) ) " Trans ) = ran ( ( SSet \ ( _I u. _E ) ) |` Trans ) |
|
| 3 | df-res | |- ( ( SSet \ ( _I u. _E ) ) |` Trans ) = ( ( SSet \ ( _I u. _E ) ) i^i ( Trans X. _V ) ) |
|
| 4 | indif1 | |- ( ( SSet \ ( _I u. _E ) ) i^i ( Trans X. _V ) ) = ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) |
|
| 5 | 3 4 | eqtri | |- ( ( SSet \ ( _I u. _E ) ) |` Trans ) = ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) |
| 6 | 5 | rneqi | |- ran ( ( SSet \ ( _I u. _E ) ) |` Trans ) = ran ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) |
| 7 | 2 6 | eqtri | |- ( ( SSet \ ( _I u. _E ) ) " Trans ) = ran ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) |
| 8 | 7 | difeq2i | |- ( _V \ ( ( SSet \ ( _I u. _E ) ) " Trans ) ) = ( _V \ ran ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) ) |
| 9 | 1 8 | eqtr4i | |- On = ( _V \ ( ( SSet \ ( _I u. _E ) ) " Trans ) ) |