This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative statement of the effective freeness of a class A , when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016) (Proof shortened by JJ, 26-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfnfc2 | |- ( A. x A e. V -> ( F/_ x A <-> A. y F/ x y = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcvd | |- ( F/_ x A -> F/_ x y ) |
|
| 2 | id | |- ( F/_ x A -> F/_ x A ) |
|
| 3 | 1 2 | nfeqd | |- ( F/_ x A -> F/ x y = A ) |
| 4 | 3 | alrimiv | |- ( F/_ x A -> A. y F/ x y = A ) |
| 5 | df-nfc | |- ( F/_ x { A } <-> A. y F/ x y e. { A } ) |
|
| 6 | velsn | |- ( y e. { A } <-> y = A ) |
|
| 7 | 6 | nfbii | |- ( F/ x y e. { A } <-> F/ x y = A ) |
| 8 | 7 | albii | |- ( A. y F/ x y e. { A } <-> A. y F/ x y = A ) |
| 9 | 5 8 | sylbbr | |- ( A. y F/ x y = A -> F/_ x { A } ) |
| 10 | 9 | nfunid | |- ( A. y F/ x y = A -> F/_ x U. { A } ) |
| 11 | nfa1 | |- F/ x A. x A e. V |
|
| 12 | unisng | |- ( A e. V -> U. { A } = A ) |
|
| 13 | 12 | sps | |- ( A. x A e. V -> U. { A } = A ) |
| 14 | 11 13 | nfceqdf | |- ( A. x A e. V -> ( F/_ x U. { A } <-> F/_ x A ) ) |
| 15 | 10 14 | imbitrid | |- ( A. x A e. V -> ( A. y F/ x y = A -> F/_ x A ) ) |
| 16 | 4 15 | impbid2 | |- ( A. x A e. V -> ( F/_ x A <-> A. y F/ x y = A ) ) |