This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain quotient predicate for the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvepresdmqs | ⊢ ( ( ◡ E ↾ 𝐴 ) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dmqs | ⊢ ( ( ◡ E ↾ 𝐴 ) DomainQs 𝐴 ↔ ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) | |
| 2 | n0el3 | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) | |
| 3 | 1 2 | bitr4i | ⊢ ( ( ◡ E ↾ 𝐴 ) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴 ) |