This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dflt2 | ⊢ < = ( ≤ ∖ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrel | ⊢ Rel < | |
| 2 | difss | ⊢ ( ≤ ∖ I ) ⊆ ≤ | |
| 3 | lerel | ⊢ Rel ≤ | |
| 4 | relss | ⊢ ( ( ≤ ∖ I ) ⊆ ≤ → ( Rel ≤ → Rel ( ≤ ∖ I ) ) ) | |
| 5 | 2 3 4 | mp2 | ⊢ Rel ( ≤ ∖ I ) |
| 6 | ltrelxr | ⊢ < ⊆ ( ℝ* × ℝ* ) | |
| 7 | 6 | brel | ⊢ ( 𝑥 < 𝑦 → ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 8 | lerelxr | ⊢ ≤ ⊆ ( ℝ* × ℝ* ) | |
| 9 | 2 8 | sstri | ⊢ ( ≤ ∖ I ) ⊆ ( ℝ* × ℝ* ) |
| 10 | 9 | brel | ⊢ ( 𝑥 ( ≤ ∖ I ) 𝑦 → ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 11 | xrltlen | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥 ) ) ) | |
| 12 | equcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
| 13 | vex | ⊢ 𝑦 ∈ V | |
| 14 | 13 | ideq | ⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
| 15 | 12 14 | bitr4i | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 I 𝑦 ) |
| 16 | 15 | necon3abii | ⊢ ( 𝑦 ≠ 𝑥 ↔ ¬ 𝑥 I 𝑦 ) |
| 17 | 16 | anbi2i | ⊢ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥 ) ↔ ( 𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦 ) ) |
| 18 | 11 17 | bitrdi | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦 ) ) ) |
| 19 | brdif | ⊢ ( 𝑥 ( ≤ ∖ I ) 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ ¬ 𝑥 I 𝑦 ) ) | |
| 20 | 18 19 | bitr4di | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ 𝑥 ( ≤ ∖ I ) 𝑦 ) ) |
| 21 | 7 10 20 | pm5.21nii | ⊢ ( 𝑥 < 𝑦 ↔ 𝑥 ( ≤ ∖ I ) 𝑦 ) |
| 22 | 1 5 21 | eqbrriv | ⊢ < = ( ≤ ∖ I ) |