This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dflt2 | |- < = ( <_ \ _I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrel | |- Rel < |
|
| 2 | difss | |- ( <_ \ _I ) C_ <_ |
|
| 3 | lerel | |- Rel <_ |
|
| 4 | relss | |- ( ( <_ \ _I ) C_ <_ -> ( Rel <_ -> Rel ( <_ \ _I ) ) ) |
|
| 5 | 2 3 4 | mp2 | |- Rel ( <_ \ _I ) |
| 6 | ltrelxr | |- < C_ ( RR* X. RR* ) |
|
| 7 | 6 | brel | |- ( x < y -> ( x e. RR* /\ y e. RR* ) ) |
| 8 | lerelxr | |- <_ C_ ( RR* X. RR* ) |
|
| 9 | 2 8 | sstri | |- ( <_ \ _I ) C_ ( RR* X. RR* ) |
| 10 | 9 | brel | |- ( x ( <_ \ _I ) y -> ( x e. RR* /\ y e. RR* ) ) |
| 11 | xrltlen | |- ( ( x e. RR* /\ y e. RR* ) -> ( x < y <-> ( x <_ y /\ y =/= x ) ) ) |
|
| 12 | equcom | |- ( y = x <-> x = y ) |
|
| 13 | vex | |- y e. _V |
|
| 14 | 13 | ideq | |- ( x _I y <-> x = y ) |
| 15 | 12 14 | bitr4i | |- ( y = x <-> x _I y ) |
| 16 | 15 | necon3abii | |- ( y =/= x <-> -. x _I y ) |
| 17 | 16 | anbi2i | |- ( ( x <_ y /\ y =/= x ) <-> ( x <_ y /\ -. x _I y ) ) |
| 18 | 11 17 | bitrdi | |- ( ( x e. RR* /\ y e. RR* ) -> ( x < y <-> ( x <_ y /\ -. x _I y ) ) ) |
| 19 | brdif | |- ( x ( <_ \ _I ) y <-> ( x <_ y /\ -. x _I y ) ) |
|
| 20 | 18 19 | bitr4di | |- ( ( x e. RR* /\ y e. RR* ) -> ( x < y <-> x ( <_ \ _I ) y ) ) |
| 21 | 7 10 20 | pm5.21nii | |- ( x < y <-> x ( <_ \ _I ) y ) |
| 22 | 1 5 21 | eqbrriv | |- < = ( <_ \ _I ) |