This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Less than" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltrelxr | ⊢ < ⊆ ( ℝ* × ℝ* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltxr | ⊢ < = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦 ) } ∪ ( ( ( ℝ ∪ { -∞ } ) × { +∞ } ) ∪ ( { -∞ } × ℝ ) ) ) | |
| 2 | df-3an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 <ℝ 𝑦 ) ) | |
| 3 | 2 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 <ℝ 𝑦 ) } |
| 4 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 <ℝ 𝑦 ) } ⊆ ( ℝ × ℝ ) | |
| 5 | 3 4 | eqsstri | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦 ) } ⊆ ( ℝ × ℝ ) |
| 6 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 7 | 5 6 | sstri | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦 ) } ⊆ ( ℝ* × ℝ* ) |
| 8 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 9 | snsspr2 | ⊢ { -∞ } ⊆ { +∞ , -∞ } | |
| 10 | ssun2 | ⊢ { +∞ , -∞ } ⊆ ( ℝ ∪ { +∞ , -∞ } ) | |
| 11 | df-xr | ⊢ ℝ* = ( ℝ ∪ { +∞ , -∞ } ) | |
| 12 | 10 11 | sseqtrri | ⊢ { +∞ , -∞ } ⊆ ℝ* |
| 13 | 9 12 | sstri | ⊢ { -∞ } ⊆ ℝ* |
| 14 | 8 13 | unssi | ⊢ ( ℝ ∪ { -∞ } ) ⊆ ℝ* |
| 15 | snsspr1 | ⊢ { +∞ } ⊆ { +∞ , -∞ } | |
| 16 | 15 12 | sstri | ⊢ { +∞ } ⊆ ℝ* |
| 17 | xpss12 | ⊢ ( ( ( ℝ ∪ { -∞ } ) ⊆ ℝ* ∧ { +∞ } ⊆ ℝ* ) → ( ( ℝ ∪ { -∞ } ) × { +∞ } ) ⊆ ( ℝ* × ℝ* ) ) | |
| 18 | 14 16 17 | mp2an | ⊢ ( ( ℝ ∪ { -∞ } ) × { +∞ } ) ⊆ ( ℝ* × ℝ* ) |
| 19 | xpss12 | ⊢ ( ( { -∞ } ⊆ ℝ* ∧ ℝ ⊆ ℝ* ) → ( { -∞ } × ℝ ) ⊆ ( ℝ* × ℝ* ) ) | |
| 20 | 13 8 19 | mp2an | ⊢ ( { -∞ } × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 21 | 18 20 | unssi | ⊢ ( ( ( ℝ ∪ { -∞ } ) × { +∞ } ) ∪ ( { -∞ } × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 22 | 7 21 | unssi | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦 ) } ∪ ( ( ( ℝ ∪ { -∞ } ) × { +∞ } ) ∪ ( { -∞ } × ℝ ) ) ) ⊆ ( ℝ* × ℝ* ) |
| 23 | 1 22 | eqsstri | ⊢ < ⊆ ( ℝ* × ℝ* ) |