This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of the conditional operator df-if with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfif2 | |- if ( ph , A , B ) = { x | ( ( x e. B -> ph ) -> ( x e. A /\ ph ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if | |- if ( ph , A , B ) = { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) } |
|
| 2 | df-or | |- ( ( ( x e. B /\ -. ph ) \/ ( x e. A /\ ph ) ) <-> ( -. ( x e. B /\ -. ph ) -> ( x e. A /\ ph ) ) ) |
|
| 3 | orcom | |- ( ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) <-> ( ( x e. B /\ -. ph ) \/ ( x e. A /\ ph ) ) ) |
|
| 4 | iman | |- ( ( x e. B -> ph ) <-> -. ( x e. B /\ -. ph ) ) |
|
| 5 | 4 | imbi1i | |- ( ( ( x e. B -> ph ) -> ( x e. A /\ ph ) ) <-> ( -. ( x e. B /\ -. ph ) -> ( x e. A /\ ph ) ) ) |
| 6 | 2 3 5 | 3bitr4i | |- ( ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) <-> ( ( x e. B -> ph ) -> ( x e. A /\ ph ) ) ) |
| 7 | 6 | abbii | |- { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) } = { x | ( ( x e. B -> ph ) -> ( x e. A /\ ph ) ) } |
| 8 | 1 7 | eqtri | |- if ( ph , A , B ) = { x | ( ( x e. B -> ph ) -> ( x e. A /\ ph ) ) } |