This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022) (Revised by AV, 5-May-2025) (Proof shortened by AV, 12-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgric2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐴 ) | |
| dfgric2.w | ⊢ 𝑊 = ( Vtx ‘ 𝐵 ) | ||
| dfgric2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐴 ) | ||
| dfgric2.j | ⊢ 𝐽 = ( iEdg ‘ 𝐵 ) | ||
| Assertion | gricbri | ⊢ ( 𝐴 ≃𝑔𝑟 𝐵 → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgric2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐴 ) | |
| 2 | dfgric2.w | ⊢ 𝑊 = ( Vtx ‘ 𝐵 ) | |
| 3 | dfgric2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐴 ) | |
| 4 | dfgric2.j | ⊢ 𝐽 = ( iEdg ‘ 𝐵 ) | |
| 5 | gricrcl | ⊢ ( 𝐴 ≃𝑔𝑟 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 6 | 1 2 3 4 | dfgric2 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ≃𝑔𝑟 𝐵 → ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 8 | 7 | ibi | ⊢ ( 𝐴 ≃𝑔𝑟 𝐵 → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |