This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffv5 | ⊢ ( 𝐹 ‘ 𝐴 ) = ∪ ∪ ( { ( 𝐹 “ { 𝐴 } ) } ∩ Singletons ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffv3 | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) | |
| 2 | dfiota3 | ⊢ ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ) = ∪ ∪ ( { { 𝑥 ∣ 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) } } ∩ Singletons ) | |
| 3 | abid2 | ⊢ { 𝑥 ∣ 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) } = ( 𝐹 “ { 𝐴 } ) | |
| 4 | 3 | sneqi | ⊢ { { 𝑥 ∣ 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) } } = { ( 𝐹 “ { 𝐴 } ) } |
| 5 | 4 | ineq1i | ⊢ ( { { 𝑥 ∣ 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) } } ∩ Singletons ) = ( { ( 𝐹 “ { 𝐴 } ) } ∩ Singletons ) |
| 6 | 5 | unieqi | ⊢ ∪ ( { { 𝑥 ∣ 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) } } ∩ Singletons ) = ∪ ( { ( 𝐹 “ { 𝐴 } ) } ∩ Singletons ) |
| 7 | 6 | unieqi | ⊢ ∪ ∪ ( { { 𝑥 ∣ 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) } } ∩ Singletons ) = ∪ ∪ ( { ( 𝐹 “ { 𝐴 } ) } ∩ Singletons ) |
| 8 | 1 2 7 | 3eqtri | ⊢ ( 𝐹 ‘ 𝐴 ) = ∪ ∪ ( { ( 𝐹 “ { 𝐴 } ) } ∩ Singletons ) |