This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the function relation predicate, cf. dfdisjALTV3 . Reproduction of dffun2 . For the X axis and the Y axis you can convert the right side to ( A. x1 A. y1 A. y2 ( ( x1 f y1 /\ x1 f y2 ) -> y1 = y2 ) /\ Rel F ) . (Contributed by NM, 29-Dec-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffunALTV3 | ⊢ ( FunALTV 𝐹 ↔ ( ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝐹 𝑥 ∧ 𝑢 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ∧ Rel 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffunALTV2 | ⊢ ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹 ) ) | |
| 2 | cossssid3 | ⊢ ( ≀ 𝐹 ⊆ I ↔ ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝐹 𝑥 ∧ 𝑢 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ) | |
| 3 | 2 | anbi1i | ⊢ ( ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹 ) ↔ ( ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝐹 𝑥 ∧ 𝑢 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ∧ Rel 𝐹 ) ) |
| 4 | 1 3 | bitri | ⊢ ( FunALTV 𝐹 ↔ ( ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝐹 𝑥 ∧ 𝑢 𝐹 𝑦 ) → 𝑥 = 𝑦 ) ∧ Rel 𝐹 ) ) |