This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cossssid3 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossssid2 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) | |
| 2 | 19.23v | ⊢ ( ∀ 𝑢 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) | |
| 3 | 2 | albii | ⊢ ( ∀ 𝑦 ∀ 𝑢 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 4 | alcom | ⊢ ( ∀ 𝑦 ∀ 𝑢 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑢 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) | |
| 5 | 3 4 | bitr3i | ⊢ ( ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑢 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑢 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 7 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑢 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) | |
| 8 | 1 6 7 | 3bitri | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) |