This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a function. One possibility for the definition of a function in Enderton p. 42. Compare dffun7 . (Contributed by NM, 4-Nov-2002) (Proof shortened by Andrew Salmon, 17-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffun8 | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃! 𝑦 𝑥 𝐴 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun7 | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) | |
| 2 | moeu | ⊢ ( ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑦 𝑥 𝐴 𝑦 → ∃! 𝑦 𝑥 𝐴 𝑦 ) ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm | ⊢ ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦 𝑥 𝐴 𝑦 ) |
| 5 | pm5.5 | ⊢ ( ∃ 𝑦 𝑥 𝐴 𝑦 → ( ( ∃ 𝑦 𝑥 𝐴 𝑦 → ∃! 𝑦 𝑥 𝐴 𝑦 ) ↔ ∃! 𝑦 𝑥 𝐴 𝑦 ) ) | |
| 6 | 4 5 | sylbi | ⊢ ( 𝑥 ∈ dom 𝐴 → ( ( ∃ 𝑦 𝑥 𝐴 𝑦 → ∃! 𝑦 𝑥 𝐴 𝑦 ) ↔ ∃! 𝑦 𝑥 𝐴 𝑦 ) ) |
| 7 | 2 6 | bitrid | ⊢ ( 𝑥 ∈ dom 𝐴 → ( ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∃! 𝑦 𝑥 𝐴 𝑦 ) ) |
| 8 | 7 | ralbiia | ⊢ ( ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑥 ∈ dom 𝐴 ∃! 𝑦 𝑥 𝐴 𝑦 ) |
| 9 | 8 | anbi2i | ⊢ ( ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃* 𝑦 𝑥 𝐴 𝑦 ) ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃! 𝑦 𝑥 𝐴 𝑦 ) ) |
| 10 | 1 9 | bitri | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∃! 𝑦 𝑥 𝐴 𝑦 ) ) |