This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a function. One possibility for the definition of a function in Enderton p. 42. Compare dffun7 . (Contributed by NM, 4-Nov-2002) (Proof shortened by Andrew Salmon, 17-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffun8 | |- ( Fun A <-> ( Rel A /\ A. x e. dom A E! y x A y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun7 | |- ( Fun A <-> ( Rel A /\ A. x e. dom A E* y x A y ) ) |
|
| 2 | moeu | |- ( E* y x A y <-> ( E. y x A y -> E! y x A y ) ) |
|
| 3 | vex | |- x e. _V |
|
| 4 | 3 | eldm | |- ( x e. dom A <-> E. y x A y ) |
| 5 | pm5.5 | |- ( E. y x A y -> ( ( E. y x A y -> E! y x A y ) <-> E! y x A y ) ) |
|
| 6 | 4 5 | sylbi | |- ( x e. dom A -> ( ( E. y x A y -> E! y x A y ) <-> E! y x A y ) ) |
| 7 | 2 6 | bitrid | |- ( x e. dom A -> ( E* y x A y <-> E! y x A y ) ) |
| 8 | 7 | ralbiia | |- ( A. x e. dom A E* y x A y <-> A. x e. dom A E! y x A y ) |
| 9 | 8 | anbi2i | |- ( ( Rel A /\ A. x e. dom A E* y x A y ) <-> ( Rel A /\ A. x e. dom A E! y x A y ) ) |
| 10 | 1 9 | bitri | |- ( Fun A <-> ( Rel A /\ A. x e. dom A E! y x A y ) ) |