This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffo5 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 𝑥 𝐹 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo4 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) | |
| 2 | rexex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 → ∃ 𝑥 𝑥 𝐹 𝑦 ) | |
| 3 | 2 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 𝑥 𝐹 𝑦 ) |
| 4 | 3 | anim2i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 𝑥 𝐹 𝑦 ) ) |
| 5 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 6 | fnbr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 𝐹 𝑦 ) → 𝑥 ∈ 𝐴 ) | |
| 7 | 6 | ex | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 𝐹 𝑦 → 𝑥 ∈ 𝐴 ) ) |
| 8 | 5 7 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑥 𝐹 𝑦 → 𝑥 ∈ 𝐴 ) ) |
| 9 | 8 | ancrd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑥 𝐹 𝑦 → ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 10 | 9 | eximdv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑥 𝑥 𝐹 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 11 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) | |
| 12 | 10 11 | imbitrrdi | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑥 𝑥 𝐹 𝑦 → ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
| 13 | 12 | ralimdv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 𝑥 𝐹 𝑦 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
| 14 | 13 | imdistani | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 𝑥 𝐹 𝑦 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
| 15 | 4 14 | impbii | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 𝑥 𝐹 𝑦 ) ) |
| 16 | 1 15 | bitri | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 𝑥 𝐹 𝑦 ) ) |