This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffo4 | |- ( F : A -onto-> B <-> ( F : A --> B /\ A. y e. B E. x e. A x F y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo2 | |- ( F : A -onto-> B <-> ( F : A --> B /\ ran F = B ) ) |
|
| 2 | simpl | |- ( ( F : A --> B /\ ran F = B ) -> F : A --> B ) |
|
| 3 | vex | |- y e. _V |
|
| 4 | 3 | elrn | |- ( y e. ran F <-> E. x x F y ) |
| 5 | eleq2 | |- ( ran F = B -> ( y e. ran F <-> y e. B ) ) |
|
| 6 | 4 5 | bitr3id | |- ( ran F = B -> ( E. x x F y <-> y e. B ) ) |
| 7 | 6 | biimpar | |- ( ( ran F = B /\ y e. B ) -> E. x x F y ) |
| 8 | 7 | adantll | |- ( ( ( F : A --> B /\ ran F = B ) /\ y e. B ) -> E. x x F y ) |
| 9 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 10 | fnbr | |- ( ( F Fn A /\ x F y ) -> x e. A ) |
|
| 11 | 10 | ex | |- ( F Fn A -> ( x F y -> x e. A ) ) |
| 12 | 9 11 | syl | |- ( F : A --> B -> ( x F y -> x e. A ) ) |
| 13 | 12 | ancrd | |- ( F : A --> B -> ( x F y -> ( x e. A /\ x F y ) ) ) |
| 14 | 13 | eximdv | |- ( F : A --> B -> ( E. x x F y -> E. x ( x e. A /\ x F y ) ) ) |
| 15 | df-rex | |- ( E. x e. A x F y <-> E. x ( x e. A /\ x F y ) ) |
|
| 16 | 14 15 | imbitrrdi | |- ( F : A --> B -> ( E. x x F y -> E. x e. A x F y ) ) |
| 17 | 16 | ad2antrr | |- ( ( ( F : A --> B /\ ran F = B ) /\ y e. B ) -> ( E. x x F y -> E. x e. A x F y ) ) |
| 18 | 8 17 | mpd | |- ( ( ( F : A --> B /\ ran F = B ) /\ y e. B ) -> E. x e. A x F y ) |
| 19 | 18 | ralrimiva | |- ( ( F : A --> B /\ ran F = B ) -> A. y e. B E. x e. A x F y ) |
| 20 | 2 19 | jca | |- ( ( F : A --> B /\ ran F = B ) -> ( F : A --> B /\ A. y e. B E. x e. A x F y ) ) |
| 21 | 1 20 | sylbi | |- ( F : A -onto-> B -> ( F : A --> B /\ A. y e. B E. x e. A x F y ) ) |
| 22 | fnbrfvb | |- ( ( F Fn A /\ x e. A ) -> ( ( F ` x ) = y <-> x F y ) ) |
|
| 23 | 22 | biimprd | |- ( ( F Fn A /\ x e. A ) -> ( x F y -> ( F ` x ) = y ) ) |
| 24 | eqcom | |- ( ( F ` x ) = y <-> y = ( F ` x ) ) |
|
| 25 | 23 24 | imbitrdi | |- ( ( F Fn A /\ x e. A ) -> ( x F y -> y = ( F ` x ) ) ) |
| 26 | 9 25 | sylan | |- ( ( F : A --> B /\ x e. A ) -> ( x F y -> y = ( F ` x ) ) ) |
| 27 | 26 | reximdva | |- ( F : A --> B -> ( E. x e. A x F y -> E. x e. A y = ( F ` x ) ) ) |
| 28 | 27 | ralimdv | |- ( F : A --> B -> ( A. y e. B E. x e. A x F y -> A. y e. B E. x e. A y = ( F ` x ) ) ) |
| 29 | 28 | imdistani | |- ( ( F : A --> B /\ A. y e. B E. x e. A x F y ) -> ( F : A --> B /\ A. y e. B E. x e. A y = ( F ` x ) ) ) |
| 30 | dffo3 | |- ( F : A -onto-> B <-> ( F : A --> B /\ A. y e. B E. x e. A y = ( F ` x ) ) ) |
|
| 31 | 29 30 | sylibr | |- ( ( F : A --> B /\ A. y e. B E. x e. A x F y ) -> F : A -onto-> B ) |
| 32 | 21 31 | impbii | |- ( F : A -onto-> B <-> ( F : A --> B /\ A. y e. B E. x e. A x F y ) ) |