This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeldisj3 | ⊢ ( ElDisj 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ∀ 𝑥 ∈ ( 𝑢 ∩ 𝑣 ) 𝑢 = 𝑣 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eldisj | ⊢ ( ElDisj 𝐴 ↔ Disj ( ◡ E ↾ 𝐴 ) ) | |
| 2 | relres | ⊢ Rel ( ◡ E ↾ 𝐴 ) | |
| 3 | dfdisjALTV3 | ⊢ ( Disj ( ◡ E ↾ 𝐴 ) ↔ ( ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ∧ 𝑣 ( ◡ E ↾ 𝐴 ) 𝑥 ) → 𝑢 = 𝑣 ) ∧ Rel ( ◡ E ↾ 𝐴 ) ) ) | |
| 4 | 2 3 | mpbiran2 | ⊢ ( Disj ( ◡ E ↾ 𝐴 ) ↔ ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ∧ 𝑣 ( ◡ E ↾ 𝐴 ) 𝑥 ) → 𝑢 = 𝑣 ) ) |
| 5 | an4 | ⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝑣 ) ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣 ) ) ) | |
| 6 | brcnvepres | ⊢ ( ( 𝑢 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) ) | |
| 7 | 6 | el2v | ⊢ ( 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) |
| 8 | brcnvepres | ⊢ ( ( 𝑣 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑣 ( ◡ E ↾ 𝐴 ) 𝑥 ↔ ( 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝑣 ) ) ) | |
| 9 | 8 | el2v | ⊢ ( 𝑣 ( ◡ E ↾ 𝐴 ) 𝑥 ↔ ( 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝑣 ) ) |
| 10 | 7 9 | anbi12i | ⊢ ( ( 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ∧ 𝑣 ( ◡ E ↾ 𝐴 ) 𝑥 ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝑣 ) ) ) |
| 11 | elin | ⊢ ( 𝑥 ∈ ( 𝑢 ∩ 𝑣 ) ↔ ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣 ) ) | |
| 12 | 11 | anbi2i | ⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑢 ∩ 𝑣 ) ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣 ) ) ) |
| 13 | 5 10 12 | 3bitr4i | ⊢ ( ( 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ∧ 𝑣 ( ◡ E ↾ 𝐴 ) 𝑥 ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑢 ∩ 𝑣 ) ) ) |
| 14 | df-3an | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑢 ∩ 𝑣 ) ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑢 ∩ 𝑣 ) ) ) | |
| 15 | 13 14 | bitr4i | ⊢ ( ( 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ∧ 𝑣 ( ◡ E ↾ 𝐴 ) 𝑥 ) ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑢 ∩ 𝑣 ) ) ) |
| 16 | 15 | imbi1i | ⊢ ( ( ( 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ∧ 𝑣 ( ◡ E ↾ 𝐴 ) 𝑥 ) → 𝑢 = 𝑣 ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑢 ∩ 𝑣 ) ) → 𝑢 = 𝑣 ) ) |
| 17 | 16 | 3albii | ⊢ ( ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ∧ 𝑣 ( ◡ E ↾ 𝐴 ) 𝑥 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑢 ∩ 𝑣 ) ) → 𝑢 = 𝑣 ) ) |
| 18 | 1 4 17 | 3bitri | ⊢ ( ElDisj 𝐴 ↔ ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑢 ∩ 𝑣 ) ) → 𝑢 = 𝑣 ) ) |
| 19 | r3al | ⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ∀ 𝑥 ∈ ( 𝑢 ∩ 𝑣 ) 𝑢 = 𝑣 ↔ ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝑢 ∩ 𝑣 ) ) → 𝑢 = 𝑣 ) ) | |
| 20 | 18 19 | bitr4i | ⊢ ( ElDisj 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ∀ 𝑥 ∈ ( 𝑢 ∩ 𝑣 ) 𝑢 = 𝑣 ) |