This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of coelements on the class A . (Contributed by Peter Mazsa, 20-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcoels | ⊢ ∼ 𝐴 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coels | ⊢ ∼ 𝐴 = ≀ ( ◡ E ↾ 𝐴 ) | |
| 2 | 1cossres | ⊢ ≀ ( ◡ E ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 ◡ E 𝑥 ∧ 𝑢 ◡ E 𝑦 ) } | |
| 3 | brcnvep | ⊢ ( 𝑢 ∈ V → ( 𝑢 ◡ E 𝑥 ↔ 𝑥 ∈ 𝑢 ) ) | |
| 4 | 3 | elv | ⊢ ( 𝑢 ◡ E 𝑥 ↔ 𝑥 ∈ 𝑢 ) |
| 5 | brcnvep | ⊢ ( 𝑢 ∈ V → ( 𝑢 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑢 ) ) | |
| 6 | 5 | elv | ⊢ ( 𝑢 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑢 ) |
| 7 | 4 6 | anbi12i | ⊢ ( ( 𝑢 ◡ E 𝑥 ∧ 𝑢 ◡ E 𝑦 ) ↔ ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ) |
| 8 | 7 | rexbii | ⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑢 ◡ E 𝑥 ∧ 𝑢 ◡ E 𝑦 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ) |
| 9 | 8 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 ◡ E 𝑥 ∧ 𝑢 ◡ E 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } |
| 10 | 1 2 9 | 3eqtri | ⊢ ∼ 𝐴 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } |