This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of coelements on the class A . (Contributed by Peter Mazsa, 20-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcoels | |- ~ A = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coels | |- ~ A = ,~ ( `' _E |` A ) |
|
| 2 | 1cossres | |- ,~ ( `' _E |` A ) = { <. x , y >. | E. u e. A ( u `' _E x /\ u `' _E y ) } |
|
| 3 | brcnvep | |- ( u e. _V -> ( u `' _E x <-> x e. u ) ) |
|
| 4 | 3 | elv | |- ( u `' _E x <-> x e. u ) |
| 5 | brcnvep | |- ( u e. _V -> ( u `' _E y <-> y e. u ) ) |
|
| 6 | 5 | elv | |- ( u `' _E y <-> y e. u ) |
| 7 | 4 6 | anbi12i | |- ( ( u `' _E x /\ u `' _E y ) <-> ( x e. u /\ y e. u ) ) |
| 8 | 7 | rexbii | |- ( E. u e. A ( u `' _E x /\ u `' _E y ) <-> E. u e. A ( x e. u /\ y e. u ) ) |
| 9 | 8 | opabbii | |- { <. x , y >. | E. u e. A ( u `' _E x /\ u `' _E y ) } = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
| 10 | 1 2 9 | 3eqtri | |- ~ A = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |