This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1cossres | ⊢ ≀ ( 𝑅 ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss | ⊢ ≀ ( 𝑅 ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ∧ 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑦 ) } | |
| 2 | df-rex | ⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) ↔ ∃ 𝑢 ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) ) ) | |
| 3 | anandi | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑦 ) ) ) | |
| 4 | brres | ⊢ ( 𝑥 ∈ V → ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ) ) | |
| 5 | 4 | elv | ⊢ ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ) |
| 6 | brres | ⊢ ( 𝑦 ∈ V → ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑦 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑦 ) ) ) | |
| 7 | 6 | elv | ⊢ ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑦 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑦 ) ) |
| 8 | 5 7 | anbi12i | ⊢ ( ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ∧ 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑦 ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑦 ) ) ) |
| 9 | 3 8 | bitr4i | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) ) ↔ ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ∧ 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑦 ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑢 ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) ) ↔ ∃ 𝑢 ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ∧ 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑦 ) ) |
| 11 | 2 10 | bitri | ⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) ↔ ∃ 𝑢 ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ∧ 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑦 ) ) |
| 12 | 11 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ∧ 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑦 ) } |
| 13 | 1 12 | eqtr4i | ⊢ ≀ ( 𝑅 ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) } |