This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of converse reflexive relations. (Contributed by Peter Mazsa, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcnvrefrels3 | ⊢ CnvRefRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∈ dom 𝑟 ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 𝑟 𝑦 → 𝑥 = 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnvrefrels | ⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | |
| 2 | df-cnvrefs | ⊢ CnvRefs = { 𝑟 ∣ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) } | |
| 3 | 1 2 | abeqin | ⊢ CnvRefRels = { 𝑟 ∈ Rels ∣ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) } |
| 4 | dmexg | ⊢ ( 𝑟 ∈ V → dom 𝑟 ∈ V ) | |
| 5 | 4 | elv | ⊢ dom 𝑟 ∈ V |
| 6 | rnexg | ⊢ ( 𝑟 ∈ V → ran 𝑟 ∈ V ) | |
| 7 | 6 | elv | ⊢ ran 𝑟 ∈ V |
| 8 | 5 7 | xpex | ⊢ ( dom 𝑟 × ran 𝑟 ) ∈ V |
| 9 | inex2g | ⊢ ( ( dom 𝑟 × ran 𝑟 ) ∈ V → ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ∈ V ) | |
| 10 | brcnvssr | ⊢ ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ∈ V → ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ) ) | |
| 11 | 8 9 10 | mp2b | ⊢ ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ) |
| 12 | inxpssidinxp | ⊢ ( ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ∀ 𝑥 ∈ dom 𝑟 ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 𝑟 𝑦 → 𝑥 = 𝑦 ) ) | |
| 13 | 11 12 | bitri | ⊢ ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ∀ 𝑥 ∈ dom 𝑟 ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 𝑟 𝑦 → 𝑥 = 𝑦 ) ) |
| 14 | 3 13 | rabbieq | ⊢ CnvRefRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∈ dom 𝑟 ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 𝑟 𝑦 → 𝑥 = 𝑦 ) } |