This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of converse reflexive relations. (Contributed by Peter Mazsa, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcnvrefrels3 | |- CnvRefRels = { r e. Rels | A. x e. dom r A. y e. ran r ( x r y -> x = y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnvrefrels | |- CnvRefRels = ( CnvRefs i^i Rels ) |
|
| 2 | df-cnvrefs | |- CnvRefs = { r | ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) } |
|
| 3 | 1 2 | abeqin | |- CnvRefRels = { r e. Rels | ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) } |
| 4 | dmexg | |- ( r e. _V -> dom r e. _V ) |
|
| 5 | 4 | elv | |- dom r e. _V |
| 6 | rnexg | |- ( r e. _V -> ran r e. _V ) |
|
| 7 | 6 | elv | |- ran r e. _V |
| 8 | 5 7 | xpex | |- ( dom r X. ran r ) e. _V |
| 9 | inex2g | |- ( ( dom r X. ran r ) e. _V -> ( _I i^i ( dom r X. ran r ) ) e. _V ) |
|
| 10 | brcnvssr | |- ( ( _I i^i ( dom r X. ran r ) ) e. _V -> ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) ) ) |
|
| 11 | 8 9 10 | mp2b | |- ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) ) |
| 12 | inxpssidinxp | |- ( ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) <-> A. x e. dom r A. y e. ran r ( x r y -> x = y ) ) |
|
| 13 | 11 12 | bitri | |- ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> A. x e. dom r A. y e. ran r ( x r y -> x = y ) ) |
| 14 | 3 13 | rabbieq | |- CnvRefRels = { r e. Rels | A. x e. dom r A. y e. ran r ( x r y -> x = y ) } |