This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 . (Contributed by Peter Mazsa, 21-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcnvrefrels2 | |- CnvRefRels = { r e. Rels | r C_ ( _I i^i ( dom r X. ran r ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnvrefrels | |- CnvRefRels = ( CnvRefs i^i Rels ) |
|
| 2 | df-cnvrefs | |- CnvRefs = { r | ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) } |
|
| 3 | dmexg | |- ( r e. _V -> dom r e. _V ) |
|
| 4 | 3 | elv | |- dom r e. _V |
| 5 | rnexg | |- ( r e. _V -> ran r e. _V ) |
|
| 6 | 5 | elv | |- ran r e. _V |
| 7 | 4 6 | xpex | |- ( dom r X. ran r ) e. _V |
| 8 | inex2g | |- ( ( dom r X. ran r ) e. _V -> ( _I i^i ( dom r X. ran r ) ) e. _V ) |
|
| 9 | brcnvssr | |- ( ( _I i^i ( dom r X. ran r ) ) e. _V -> ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) ) ) |
|
| 10 | 7 8 9 | mp2b | |- ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) ) |
| 11 | elrels6 | |- ( r e. _V -> ( r e. Rels <-> ( r i^i ( dom r X. ran r ) ) = r ) ) |
|
| 12 | 11 | elv | |- ( r e. Rels <-> ( r i^i ( dom r X. ran r ) ) = r ) |
| 13 | 12 | biimpi | |- ( r e. Rels -> ( r i^i ( dom r X. ran r ) ) = r ) |
| 14 | 13 | sseq1d | |- ( r e. Rels -> ( ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) <-> r C_ ( _I i^i ( dom r X. ran r ) ) ) ) |
| 15 | 10 14 | bitrid | |- ( r e. Rels -> ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> r C_ ( _I i^i ( dom r X. ran r ) ) ) ) |
| 16 | 1 2 15 | abeqinbi | |- CnvRefRels = { r e. Rels | r C_ ( _I i^i ( dom r X. ran r ) ) } |