This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Augment an abelian group with vector space operations to turn it into a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-zlm | ⊢ ℤMod = ( 𝑔 ∈ V ↦ ( ( 𝑔 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝑔 ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | czlm | ⊢ ℤMod | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cvv | ⊢ V | |
| 3 | 1 | cv | ⊢ 𝑔 |
| 4 | csts | ⊢ sSet | |
| 5 | csca | ⊢ Scalar | |
| 6 | cnx | ⊢ ndx | |
| 7 | 6 5 | cfv | ⊢ ( Scalar ‘ ndx ) |
| 8 | czring | ⊢ ℤring | |
| 9 | 7 8 | cop | ⊢ 〈 ( Scalar ‘ ndx ) , ℤring 〉 |
| 10 | 3 9 4 | co | ⊢ ( 𝑔 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) |
| 11 | cvsca | ⊢ ·𝑠 | |
| 12 | 6 11 | cfv | ⊢ ( ·𝑠 ‘ ndx ) |
| 13 | cmg | ⊢ .g | |
| 14 | 3 13 | cfv | ⊢ ( .g ‘ 𝑔 ) |
| 15 | 12 14 | cop | ⊢ 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝑔 ) 〉 |
| 16 | 10 15 4 | co | ⊢ ( ( 𝑔 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝑔 ) 〉 ) |
| 17 | 1 2 16 | cmpt | ⊢ ( 𝑔 ∈ V ↦ ( ( 𝑔 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝑔 ) 〉 ) ) |
| 18 | 0 17 | wceq | ⊢ ℤMod = ( 𝑔 ∈ V ↦ ( ( 𝑔 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝑔 ) 〉 ) ) |