This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Algebraic constructions based on the complex numbers
df-zrh
Metamath Proof Explorer
Description: Define the unique homomorphism from the integers into a ring. This
encodes the usual notation of n = 1r + 1r + ... + 1r for integers
(see also df-mulg ). (Contributed by Mario Carneiro , 13-Jun-2015)
(Revised by AV , 12-Jun-2019)
Ref
Expression
Assertion
df-zrh
⊢ ℤRHom = r ∈ V ⟼ ⋃ ℤ ring RingHom r
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
czrh
class ℤRHom
1
vr
setvar r
2
cvv
class V
3
czring
class ℤ ring
4
crh
class RingHom
5
1
cv
setvar r
6
3 5 4
co
class ℤ ring RingHom r
7
6
cuni
class ⋃ ℤ ring RingHom r
8
1 2 7
cmpt
class r ∈ V ⟼ ⋃ ℤ ring RingHom r
9
0 8
wceq
wff ℤRHom = r ∈ V ⟼ ⋃ ℤ ring RingHom r