This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid is a subset of a monoid which contains the identity and is closed under the operation. Such subsets are themselves monoids with the same identity. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-submnd | |- SubMnd = ( s e. Mnd |-> { t e. ~P ( Base ` s ) | ( ( 0g ` s ) e. t /\ A. x e. t A. y e. t ( x ( +g ` s ) y ) e. t ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csubmnd | |- SubMnd |
|
| 1 | vs | |- s |
|
| 2 | cmnd | |- Mnd |
|
| 3 | vt | |- t |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- s |
| 6 | 5 4 | cfv | |- ( Base ` s ) |
| 7 | 6 | cpw | |- ~P ( Base ` s ) |
| 8 | c0g | |- 0g |
|
| 9 | 5 8 | cfv | |- ( 0g ` s ) |
| 10 | 3 | cv | |- t |
| 11 | 9 10 | wcel | |- ( 0g ` s ) e. t |
| 12 | vx | |- x |
|
| 13 | vy | |- y |
|
| 14 | 12 | cv | |- x |
| 15 | cplusg | |- +g |
|
| 16 | 5 15 | cfv | |- ( +g ` s ) |
| 17 | 13 | cv | |- y |
| 18 | 14 17 16 | co | |- ( x ( +g ` s ) y ) |
| 19 | 18 10 | wcel | |- ( x ( +g ` s ) y ) e. t |
| 20 | 19 13 10 | wral | |- A. y e. t ( x ( +g ` s ) y ) e. t |
| 21 | 20 12 10 | wral | |- A. x e. t A. y e. t ( x ( +g ` s ) y ) e. t |
| 22 | 11 21 | wa | |- ( ( 0g ` s ) e. t /\ A. x e. t A. y e. t ( x ( +g ` s ) y ) e. t ) |
| 23 | 22 3 7 | crab | |- { t e. ~P ( Base ` s ) | ( ( 0g ` s ) e. t /\ A. x e. t A. y e. t ( x ( +g ` s ) y ) e. t ) } |
| 24 | 1 2 23 | cmpt | |- ( s e. Mnd |-> { t e. ~P ( Base ` s ) | ( ( 0g ` s ) e. t /\ A. x e. t A. y e. t ( x ( +g ` s ) y ) e. t ) } ) |
| 25 | 0 24 | wceq | |- SubMnd = ( s e. Mnd |-> { t e. ~P ( Base ` s ) | ( ( 0g ` s ) e. t /\ A. x e. t A. y e. t ( x ( +g ` s ) y ) e. t ) } ) |