This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Monoid homomorphisms and submonoids
df-submnd
Metamath Proof Explorer
Description: A submonoid is a subset of a monoid which contains the identity and is
closed under the operation. Such subsets are themselves monoids with
the same identity. (Contributed by Mario Carneiro , 7-Mar-2015)
Ref
Expression
Assertion
df-submnd
⊢ SubMnd = s ∈ Mnd ⟼ t ∈ 𝒫 Base s | 0 s ∈ t ∧ ∀ x ∈ t ∀ y ∈ t x + s y ∈ t
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
csubmnd
class SubMnd
1
vs
setvar s
2
cmnd
class Mnd
3
vt
setvar t
4
cbs
class Base
5
1
cv
setvar s
6
5 4
cfv
class Base s
7
6
cpw
class 𝒫 Base s
8
c0g
class 0 𝑔
9
5 8
cfv
class 0 s
10
3
cv
setvar t
11
9 10
wcel
wff 0 s ∈ t
12
vx
setvar x
13
vy
setvar y
14
12
cv
setvar x
15
cplusg
class + 𝑔
16
5 15
cfv
class + s
17
13
cv
setvar y
18
14 17 16
co
class x + s y
19
18 10
wcel
wff x + s y ∈ t
20
19 13 10
wral
wff ∀ y ∈ t x + s y ∈ t
21
20 12 10
wral
wff ∀ x ∈ t ∀ y ∈ t x + s y ∈ t
22
11 21
wa
wff 0 s ∈ t ∧ ∀ x ∈ t ∀ y ∈ t x + s y ∈ t
23
22 3 7
crab
class t ∈ 𝒫 Base s | 0 s ∈ t ∧ ∀ x ∈ t ∀ y ∈ t x + s y ∈ t
24
1 2 23
cmpt
class s ∈ Mnd ⟼ t ∈ 𝒫 Base s | 0 s ∈ t ∧ ∀ x ∈ t ∀ y ∈ t x + s y ∈ t
25
0 24
wceq
wff SubMnd = s ∈ Mnd ⟼ t ∈ 𝒫 Base s | 0 s ∈ t ∧ ∀ x ∈ t ∀ y ∈ t x + s y ∈ t