This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric; see df-ms . However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of Gleason p. 223. The 4 properties in Gleason's definition are shown by met0 , metgt0 , metsym , and mettri . (Contributed by NM, 25-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-met | ⊢ Met = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmet | ⊢ Met | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cvv | ⊢ V | |
| 3 | vd | ⊢ 𝑑 | |
| 4 | cr | ⊢ ℝ | |
| 5 | cmap | ⊢ ↑m | |
| 6 | 1 | cv | ⊢ 𝑥 |
| 7 | 6 6 | cxp | ⊢ ( 𝑥 × 𝑥 ) |
| 8 | 4 7 5 | co | ⊢ ( ℝ ↑m ( 𝑥 × 𝑥 ) ) |
| 9 | vy | ⊢ 𝑦 | |
| 10 | vz | ⊢ 𝑧 | |
| 11 | 9 | cv | ⊢ 𝑦 |
| 12 | 3 | cv | ⊢ 𝑑 |
| 13 | 10 | cv | ⊢ 𝑧 |
| 14 | 11 13 12 | co | ⊢ ( 𝑦 𝑑 𝑧 ) |
| 15 | cc0 | ⊢ 0 | |
| 16 | 14 15 | wceq | ⊢ ( 𝑦 𝑑 𝑧 ) = 0 |
| 17 | 11 13 | wceq | ⊢ 𝑦 = 𝑧 |
| 18 | 16 17 | wb | ⊢ ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) |
| 19 | vw | ⊢ 𝑤 | |
| 20 | cle | ⊢ ≤ | |
| 21 | 19 | cv | ⊢ 𝑤 |
| 22 | 21 11 12 | co | ⊢ ( 𝑤 𝑑 𝑦 ) |
| 23 | caddc | ⊢ + | |
| 24 | 21 13 12 | co | ⊢ ( 𝑤 𝑑 𝑧 ) |
| 25 | 22 24 23 | co | ⊢ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) |
| 26 | 14 25 20 | wbr | ⊢ ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) |
| 27 | 26 19 6 | wral | ⊢ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) |
| 28 | 18 27 | wa | ⊢ ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) |
| 29 | 28 10 6 | wral | ⊢ ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) |
| 30 | 29 9 6 | wral | ⊢ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) |
| 31 | 30 3 8 | crab | ⊢ { 𝑑 ∈ ( ℝ ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) } |
| 32 | 1 2 31 | cmpt | ⊢ ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) } ) |
| 33 | 0 32 | wceq | ⊢ Met = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) + ( 𝑤 𝑑 𝑧 ) ) ) } ) |