This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Definition and basic properties
df-met
Metamath Proof Explorer
Description: Define the (proper) class of all metrics. (A metric space is the
metric's base set paired with the metric; see df-ms . However, we
will often also call the metric itself a "metric space".) Equivalent to
Definition 14-1.1 of Gleason p. 223. The 4 properties in Gleason's
definition are shown by met0 , metgt0 , metsym , and mettri .
(Contributed by NM , 25-Aug-2006)
Ref
Expression
Assertion
df-met
⊢ Met = x ∈ V ⟼ d ∈ ℝ x × x | ∀ y ∈ x ∀ z ∈ x y d z = 0 ↔ y = z ∧ ∀ w ∈ x y d z ≤ w d y + w d z
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cmet
class Met
1
vx
setvar x
2
cvv
class V
3
vd
setvar d
4
cr
class ℝ
5
cmap
class ↑ 𝑚
6
1
cv
setvar x
7
6 6
cxp
class x × x
8
4 7 5
co
class ℝ x × x
9
vy
setvar y
10
vz
setvar z
11
9
cv
setvar y
12
3
cv
setvar d
13
10
cv
setvar z
14
11 13 12
co
class y d z
15
cc0
class 0
16
14 15
wceq
wff y d z = 0
17
11 13
wceq
wff y = z
18
16 17
wb
wff y d z = 0 ↔ y = z
19
vw
setvar w
20
cle
class ≤
21
19
cv
setvar w
22
21 11 12
co
class w d y
23
caddc
class +
24
21 13 12
co
class w d z
25
22 24 23
co
class w d y + w d z
26
14 25 20
wbr
wff y d z ≤ w d y + w d z
27
26 19 6
wral
wff ∀ w ∈ x y d z ≤ w d y + w d z
28
18 27
wa
wff y d z = 0 ↔ y = z ∧ ∀ w ∈ x y d z ≤ w d y + w d z
29
28 10 6
wral
wff ∀ z ∈ x y d z = 0 ↔ y = z ∧ ∀ w ∈ x y d z ≤ w d y + w d z
30
29 9 6
wral
wff ∀ y ∈ x ∀ z ∈ x y d z = 0 ↔ y = z ∧ ∀ w ∈ x y d z ≤ w d y + w d z
31
30 3 8
crab
class d ∈ ℝ x × x | ∀ y ∈ x ∀ z ∈ x y d z = 0 ↔ y = z ∧ ∀ w ∈ x y d z ≤ w d y + w d z
32
1 2 31
cmpt
class x ∈ V ⟼ d ∈ ℝ x × x | ∀ y ∈ x ∀ z ∈ x y d z = 0 ↔ y = z ∧ ∀ w ∈ x y d z ≤ w d y + w d z
33
0 32
wceq
wff Met = x ∈ V ⟼ d ∈ ℝ x × x | ∀ y ∈ x ∀ z ∈ x y d z = 0 ↔ y = z ∧ ∀ w ∈ x y d z ≤ w d y + w d z