This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ms | ⊢ MetSp = { 𝑓 ∈ ∞MetSp ∣ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cms | ⊢ MetSp | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cxms | ⊢ ∞MetSp | |
| 3 | cds | ⊢ dist | |
| 4 | 1 | cv | ⊢ 𝑓 |
| 5 | 4 3 | cfv | ⊢ ( dist ‘ 𝑓 ) |
| 6 | cbs | ⊢ Base | |
| 7 | 4 6 | cfv | ⊢ ( Base ‘ 𝑓 ) |
| 8 | 7 7 | cxp | ⊢ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) |
| 9 | 5 8 | cres | ⊢ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) |
| 10 | cmet | ⊢ Met | |
| 11 | 7 10 | cfv | ⊢ ( Met ‘ ( Base ‘ 𝑓 ) ) |
| 12 | 9 11 | wcel | ⊢ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) |
| 13 | 12 1 2 | crab | ⊢ { 𝑓 ∈ ∞MetSp ∣ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) } |
| 14 | 0 13 | wceq | ⊢ MetSp = { 𝑓 ∈ ∞MetSp ∣ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑓 ) ) } |