This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define subgroup sum (inner direct product of subgroups). (Contributed by NM, 28-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lsm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clsm | ||
| 1 | vw | ||
| 2 | cvv | ||
| 3 | vt | ||
| 4 | cbs | ||
| 5 | 1 | cv | |
| 6 | 5 4 | cfv | |
| 7 | 6 | cpw | |
| 8 | vu | ||
| 9 | vx | ||
| 10 | 3 | cv | |
| 11 | vy | ||
| 12 | 8 | cv | |
| 13 | 9 | cv | |
| 14 | cplusg | ||
| 15 | 5 14 | cfv | |
| 16 | 11 | cv | |
| 17 | 13 16 15 | co | |
| 18 | 9 11 10 12 17 | cmpo | |
| 19 | 18 | crn | |
| 20 | 3 8 7 7 19 | cmpo | |
| 21 | 1 2 20 | cmpt | |
| 22 | 0 21 | wceq |