This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define subgroup sum (inner direct product of subgroups). (Contributed by NM, 28-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lsm | |- LSSum = ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clsm | |- LSSum |
|
| 1 | vw | |- w |
|
| 2 | cvv | |- _V |
|
| 3 | vt | |- t |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- w |
| 6 | 5 4 | cfv | |- ( Base ` w ) |
| 7 | 6 | cpw | |- ~P ( Base ` w ) |
| 8 | vu | |- u |
|
| 9 | vx | |- x |
|
| 10 | 3 | cv | |- t |
| 11 | vy | |- y |
|
| 12 | 8 | cv | |- u |
| 13 | 9 | cv | |- x |
| 14 | cplusg | |- +g |
|
| 15 | 5 14 | cfv | |- ( +g ` w ) |
| 16 | 11 | cv | |- y |
| 17 | 13 16 15 | co | |- ( x ( +g ` w ) y ) |
| 18 | 9 11 10 12 17 | cmpo | |- ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) |
| 19 | 18 | crn | |- ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) |
| 20 | 3 8 7 7 19 | cmpo | |- ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) |
| 21 | 1 2 20 | cmpt | |- ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) ) |
| 22 | 0 21 | wceq | |- LSSum = ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) ) |