This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the eigenvalue function. The range of eigvalT is the set of eigenvalues of Hilbert space operator T . Theorem eigvalcl shows that ( eigvalT )A , the eigenvalue associated with eigenvector A , is a complex number. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-eigval | |- eigval = ( t e. ( ~H ^m ~H ) |-> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cel | |- eigval |
|
| 1 | vt | |- t |
|
| 2 | chba | |- ~H |
|
| 3 | cmap | |- ^m |
|
| 4 | 2 2 3 | co | |- ( ~H ^m ~H ) |
| 5 | vx | |- x |
|
| 6 | cei | |- eigvec |
|
| 7 | 1 | cv | |- t |
| 8 | 7 6 | cfv | |- ( eigvec ` t ) |
| 9 | 5 | cv | |- x |
| 10 | 9 7 | cfv | |- ( t ` x ) |
| 11 | csp | |- .ih |
|
| 12 | 10 9 11 | co | |- ( ( t ` x ) .ih x ) |
| 13 | cdiv | |- / |
|
| 14 | cno | |- normh |
|
| 15 | 9 14 | cfv | |- ( normh ` x ) |
| 16 | cexp | |- ^ |
|
| 17 | c2 | |- 2 |
|
| 18 | 15 17 16 | co | |- ( ( normh ` x ) ^ 2 ) |
| 19 | 12 18 13 | co | |- ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) |
| 20 | 5 8 19 | cmpt | |- ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) |
| 21 | 1 4 20 | cmpt | |- ( t e. ( ~H ^m ~H ) |-> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) |
| 22 | 0 21 | wceq | |- eigval = ( t e. ( ~H ^m ~H ) |-> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) |