This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the spectrum of an operator. Definition of spectrum in Halmos p. 50. (Contributed by NM, 11-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-spec | ⊢ Lambda = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cspc | ⊢ Lambda | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | chba | ⊢ ℋ | |
| 3 | cmap | ⊢ ↑m | |
| 4 | 2 2 3 | co | ⊢ ( ℋ ↑m ℋ ) |
| 5 | vx | ⊢ 𝑥 | |
| 6 | cc | ⊢ ℂ | |
| 7 | 1 | cv | ⊢ 𝑡 |
| 8 | chod | ⊢ −op | |
| 9 | 5 | cv | ⊢ 𝑥 |
| 10 | chot | ⊢ ·op | |
| 11 | cid | ⊢ I | |
| 12 | 11 2 | cres | ⊢ ( I ↾ ℋ ) |
| 13 | 9 12 10 | co | ⊢ ( 𝑥 ·op ( I ↾ ℋ ) ) |
| 14 | 7 13 8 | co | ⊢ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) |
| 15 | 2 2 14 | wf1 | ⊢ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ |
| 16 | 15 | wn | ⊢ ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ |
| 17 | 16 5 6 | crab | ⊢ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } |
| 18 | 1 4 17 | cmpt | ⊢ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ) |
| 19 | 0 18 | wceq | ⊢ Lambda = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ) |