This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adistributive lattice is a lattice in which meets distribute over joins, or equivalently ( latdisd ) joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dlat | |- DLat = { k e. Lat | [. ( Base ` k ) / b ]. [. ( join ` k ) / j ]. [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdlat | |- DLat |
|
| 1 | vk | |- k |
|
| 2 | clat | |- Lat |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- k |
| 5 | 4 3 | cfv | |- ( Base ` k ) |
| 6 | vb | |- b |
|
| 7 | cjn | |- join |
|
| 8 | 4 7 | cfv | |- ( join ` k ) |
| 9 | vj | |- j |
|
| 10 | cmee | |- meet |
|
| 11 | 4 10 | cfv | |- ( meet ` k ) |
| 12 | vm | |- m |
|
| 13 | vx | |- x |
|
| 14 | 6 | cv | |- b |
| 15 | vy | |- y |
|
| 16 | vz | |- z |
|
| 17 | 13 | cv | |- x |
| 18 | 12 | cv | |- m |
| 19 | 15 | cv | |- y |
| 20 | 9 | cv | |- j |
| 21 | 16 | cv | |- z |
| 22 | 19 21 20 | co | |- ( y j z ) |
| 23 | 17 22 18 | co | |- ( x m ( y j z ) ) |
| 24 | 17 19 18 | co | |- ( x m y ) |
| 25 | 17 21 18 | co | |- ( x m z ) |
| 26 | 24 25 20 | co | |- ( ( x m y ) j ( x m z ) ) |
| 27 | 23 26 | wceq | |- ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 28 | 27 16 14 | wral | |- A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 29 | 28 15 14 | wral | |- A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 30 | 29 13 14 | wral | |- A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 31 | 30 12 11 | wsbc | |- [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 32 | 31 9 8 | wsbc | |- [. ( join ` k ) / j ]. [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 33 | 32 6 5 | wsbc | |- [. ( Base ` k ) / b ]. [. ( join ` k ) / j ]. [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) |
| 34 | 33 1 2 | crab | |- { k e. Lat | [. ( Base ` k ) / b ]. [. ( join ` k ) / j ]. [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) } |
| 35 | 0 34 | wceq | |- DLat = { k e. Lat | [. ( Base ` k ) / b ]. [. ( join ` k ) / j ]. [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) } |