This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 , eqvrelcoss3 and eqvrelcoss4 when needed. (Contributed by Peter Mazsa, 28-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcoeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) | |
| 2 | df-coels | ⊢ ∼ 𝐴 = ≀ ( ◡ E ↾ 𝐴 ) | |
| 3 | 2 | eqvreleqi | ⊢ ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) |
| 4 | 1 3 | bitr4i | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴 ) |